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Abstract

This report presents trade-off studies on Time-Frequency Distribution (TFD)
algorithms and a methodology for fusing them to achieve better target characterization.
It is shown that TFD algorithmic fusion considerably increases the detectability of
signals while suppressing artifacts and noise. The report reviews a sample of
representative TFD algorithms. Their performance is studied from a qualitative and
quantitative point of view. For simplicity, we considered the mean-squared error as a
measure of performance in the quantitative trade-off studies. The TFD algorithmic
fusion is performed using a self-adaptive signal. It may be adjusted to work for a wide
range of signal-to-noise ratios. The algorithm uses the first two terms of the Volterra
series expansion and we treat the outputs of the time-frequency algorithms as the
variables of a Volterra series and the coefficients of the series are estimated through
training sets with a least-squares algorithm. Simplistic TFD algorithmic fusion methods
(e.g., weighted averaging or weighted multiplication) are special cases of the proposed
fusion technique. We demonstrate the effectiveness of TFD algorithmic fusion method
using experimental High Range Resolution (HRR) radar data and simulated data.
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Résumé

Le présent rapport décrit des études de compromis portant sur les algorithmes de
distribution temps-fréquence (DTF) et une méthode permettant de les fusionner en vue
d’accroître la performance. On montre que la fusion d’algorithmes de DTF accroît
considérablement la détectabilité des signaux tout en supprimant les artefacts et le bruit.
Le rapport examine un échantillon d’algorithmes de DTF représentatifs. Leur
performance est étudiée des points de vue qualitatif et quantitatif. Par souci de
simplicité, nous avons utilisé l’erreur quadratique moyenne comme mesure de la
performance dans les études de compromis quantitatives. On effectue la fusion des
algorithmes de DTF en utilisant un signal auto-adaptatif. Un ajustement peut être
effectué pour l’utilisation avec une vaste gamme rapports signal/bruit. En utilisant les
deux premiers termes du développement en série de Volterra, nous traitons les résultats
des algorithmes temps-fréquence comme les variables d’une série de Volterra, et les
coefficients de la série sont évalués au moyen d’ensembles d’entraînement par un
algorithme des moindres carrés. Les méthodes simples de fusion des algorithmes de
DTF (p. ex. moyennage pondéré ou multiplication pondérée) sont des cas particuliers
de la technique de fusion proposée. Nous démontrons l’efficacité de la méthode de
fusion des algorithmes de DTF en nous servant de données expérimentales du radar à
haute résolution en distance (HRR).
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Executive summary

One of the most serious deficiencies in NATO’s air defence capability and the one that
affects almost every aspect of air command and control, and weapon systems are the
lack of a rapid and reliable means of identifying air targets. Radar offers a capability to
identify targets over long distances, under all weather conditions, during day or night,
without the need for the target’s cooperation. This mode of identification is known as
Non-Cooperative Target Recognition (NCTR). The problem of NCTR has always been
a topic of interest in military operations, that is, to improve situational awareness.

The radar echo provides a target profile that serves as a ‘signature’ for identification
purposes. There are a number of radar techniques that can be applied to NCTR. Among
some of the more promising methods are High Range Resolution (HRR), Jet Engine
Modulation (JEM) and Inverse Synthetic Aperture Radar (ISAR). An operational
NCTR system must satisfy two requirements: accurate identification and real time
operation. It has been identified that HRR would be a promising candidate for an
operational NCTR system. HRR has a relatively simple structure (e.g., 1-dimensional
imagery) and has an all aspect capability. It requires a modest signal-to-noise ratio, and
is applicable to a large class of radar systems.

Our previous experimental studies show that HRR radar image profiles can be severely
distorted when a target possesses very small-perturbed random motions. Therefore the
ability to generate focussed images from HRR is of paramount importance to military
and intelligence operations. One of the central problems in HRR radar data is the
analysis of a time series. Traditionally, HRR radar signals have been analysed in either
the time or the frequency domain. The Fourier transform is at the heart of a wide range
of techniques that are used in HRR radar data analysis and processing. The Fourier
transform-based techniques are effective as long as the frequency contents of the signal
do not change with time. However, the change of frequency content with time is one of
the main features we observe in HRR radar data. Because of this change of frequency
content with time, HRR radar signals belong to the class of non-stationary signals.
Consequently, for the interpretation of radar data in terms of a changing frequency
content, we need a representation of our data as a function of both time and frequency.
Time-Frequency Distributions (TFDs) describe signals in term of their joint
time-frequency content. These distributions are useful for analyzing signals with both
time and frequency variations. Therefore, for signals with time-varying frequency
contents, TFDs offer a powerful analysis tool. Analysis of the time-varying Doppler
signature in the joint time-frequency domain can provide useful information for target
detection, classification and recognition.

In this report, a new TFD algorithmic fusion method has been presented and evaluated
on experimental HRR radar data and simulated data. It is shown that our TFD
algorithmic fusion method provides an effective method of achieving improved
resolution, highly concentrated and readable representation without the auto-term
distortion and cross-term artifacts. This method is suitable for HRR and ISAR data
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where multiple scatterers are present, and that noise and artifact reduction are essential
for target identification applications. Analysis of the time-varying Doppler signature in
the joint time-frequency domain can provide useful information for target detection,
classification and recognition. We anticipate that this new approach will find a wide
range of uses and will emerge as a powerful tool for time-varying spectral analysis.

This study is a part of the work sponsored by the US Office of Naval Research to
investigate the distortion of HRR and ISAR images under the US Navy’s International
Collaborative Opportunity Program (NICOP). Canada is a participant in this project on
“Time-frequency processing for ISAR imaging and Non-Cooperative Target
Identification". The work performed in this report is relevant to the ISAR imaging
capability of the surveillance radar systems on-board of the CF C-140 Aurora patrol
aircraft. It should also be noted that target recognition based on radar imagery will play
an important role in future CF initiatives on ISR (Intelligence, Surveillance and
Reconnaissance) for land, air and maritime applications.

T. Thayaparan , G. Lampropoulos. 2003. A New Approach in Time-Frequency Analysis with
Applications to Experimental High Range Resolution Radar Data. DRDC
Ottawa TR 2003-187. Defence R&D Canada - Ottawa.
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Sommaire

Une des plus graves lacunes de la capacité de défense aérienne de l’OTAN, qui a une
incidence sur presque tous les aspects du commandement et du contrôle aériens ainsi
que des systèmes d’armes, est l’absence d’un moyen rapide et fiable d’identification des
objectifs aériens. Le radar permet d’identifier les objectifs sur de grandes distances,
dans toutes les conditions météorologiques, le jour ou la nuit, sans nécessiter la
coopération de l’objectif. Ce mode d’identification est appelé la reconnaissance de
cible non coopérative (NCTR). Le problème de la NCTR a toujours présenté un intérêt
dans les opérations militaires, par exemple du point de vue de l’amélioration de la
connaissance de la situation.

L’écho radar fournit un profil d’objectif qui sert de « signature » aux fins de
l’identification. Il existe un certain nombre de techniques radar qui peuvent être
appliquées à la NCTR. La technique à haute résolution en distance (HRR), la
modulation des moteurs à réaction (JEM) et la technique du radar à synthèse
d’ouverture inverse (ISAR) comptent parmi les méthodes les plus prometteuses. Un
système de NCTR opérationnel doit satisfaire à deux exigences : identification précise
et fonctionnement en temps réel. On a déterminé que la technique HRR serait une
candidate prometteuse comme système de NCTR opérationnel. Elle comporte une
structure relativement simple (p. ex. imagerie unidimensionnelle) et elle possède une
capacité tous secteurs. Il lui suffit d’un faible rapport signal/bruit et elle est applicable à
une large classe de systèmes radar.

Nos études expérimentales antérieures montrent que les profils d’images obtenus avec
le radar HRR peuvent être fortement déformés lorsqu’un objectif effectue des
mouvements aléatoires très faiblement perturbés. Par conséquent, la capacité de
générer des images mises au point à partir du radar HRR est d’une importance
primordiale pour les opérations militaires et les opérations de renseignement. L’analyse
d’une série chronologique constitue l’un des principaux problèmes éprouvés avec les
données du radar HRR. Par le passé, les signaux radar ont été analysés soit dans le
domaine temporel, soit dans le domaine fréquentiel. La transformation de Fourier est
au cœur d’une vaste gamme de techniques qui sont utilisées pour l’analyse et le
traitement des données du radar HRR. Les techniques à transformation de Fourier sont
efficaces dans la mesure où le contenu fréquentiel du signal ne varie pas avec le temps.
Cependant, la variation du contenu fréquentiel avec le temps est une des principales
caractéristiques que nous observons dans les données du radar HRR. En raison de cette
variation du contenu fréquentiel avec le temps, les signaux du radar HRR appartiennent
à la catégorie des signaux non stationnaires. Par conséquent, pour l’interprétation des
données radar du point de vue d’un contenu fréquentiel changeant, nous avons besoin
d’une représentation de nos données en fonction du temps et de la fréquence. Les
distributions temps-fréquence(DTF) décrivent les signaux du point de vue de leur
contenu temporel-fréquentiel. Elles sont utiles pour l’analyse des signaux qui
présentent des variations temporelles et fréquentielles. Par conséquent, les DTF
constituent un outil d’analyse puissant des signaux dont le contenu fréquentiel varie
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dans le temps.

Dans ce rapport, nous avons présenté une nouvelle méthode de fusion des algorithmes
de DTF et nous l’avons évaluée en l’appliquant aux données expérimentales du radar
HRR. On montre que la méthode de fusion des algorithmes de DTF constitue un moyen
efficace pour obtenir une représentation à résolution accrue, hautement concentrée et
lisible sans la distorsion des auto-termes ni les artefacts de termes croisés. Cette
méthode est applicable aux données du radar HRR et du radar ISAR lorsque des
diffuseurs multiples sont présents, et que la réduction du bruit et des artefacts est
essentielle pour les applications d’identification d’objectif. Nous espérons que cette
nouvelle approche aura aussi des applications dans une vaste gamme de situations et
qu’elle se révélera un outil puissant pour l’analyse des spectres variant dans le temps.

T. Thayaparan , G. Lampropoulos. 2003. A New Approach in Time-Frequency Analysis with
Applications to Experimental High Range Resolution Radar Data. DRDC
Ottawa TR 2003-187. R & D pour la défense Canada - Ottawa.
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1. Introduction

Our previous experimental studies show that High Range Resolution (HRR) radar
image profiles can be severely distorted when a target possesses very small-perturbed
random motions [1]. The ability to generate focussed images from HRR is of
paramount importance to military and intelligence operations. One of the central
problems in HRR radar data is the analysis of a time series. Traditionally, HRR radar
signals have been analysed in either the time or the frequency domain. The Fourier
transform is at the heart of a wide range of techniques that are used in HRR radar data
analysis and processing. The Fourier transform-based techniques are effective as long
as the frequency contents of the signal do not change with time [2-3]. However, the
change of frequency content with time is one of the main features we observe in HRR
radar data when stepped frequency wave form HRR processing is used. Because of this
change of frequency content with time, HRR radar signals belong to the class of
non-stationary signals. Consequently, for the interpretation of radar data in terms of a
changing frequency content, we need a representation of our data as a function of both
time and frequency. Time-Frequency Distributions (TFDs) describe signals in term of
their joint time-frequency content. These distributions are useful for analyzing signals
with both time and frequency variations. Therefore, for signals with time-varying
frequency contents, TFDs offer a powerful analysis tool.

Over the past ten years, radar researchers have also investigated TFDs as a unique tool
for radar-specific signal analysis and image processing applications [4-10]. It was
found that TFDs provide additional insight into the analysis, interpretation, and
processing of radar signals that are sometimes superior to what is achievable in the
traditional time or frequency domain alone. The specific applications where TFDs have
been used include signal analysis and feature extraction, motion compensation and
image formation, signal SNR (signal-to-noise ratio) improvement, imaging of moving
targets, and detection of moving targets [4-10].

The most widely known time-frequency analysis techniques belong to the Cohen class
with the leading transform being the Wigner-Ville distribution, which is based on a
bilinear model [5-7,11-12]. This model is able to analyze time-varying signals with
relatively high resolution. However, being a bilinear model it introduces cross-term
artifacts[5-7,11-12]. Hence, filtering techniques have been proposed to reduce the
cross-term artifacts. Among them, the most well known filtering method uses the
Choi-Williams filter [13]. Higher than bilinear order models have also been proposed
for time-frequency analysis, e.g., Wigner bispectrum and trispectrum. Choi-Williams
filters have also been incorporated into these models. These higher-order models work
well with isolated signals (time-varying or stationary). However, it will be shown in
this report that it is very difficult to reduce the cross-term artifacts in the case of
multiple signals (i.e., multiple point scatterers from a target).

Wavelet-based transforms have been also proposed for time-frequency analysis.
Wavelet transforms break the signal into a set of bases with a shape that is based on
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affine transformations (i.e., translations and dilations) of a basic wavelet called the
mother wavelet. Here the aspect ratios in the time-frequency plane are proportional to
the distance from the zero frequency and the ratio of the bandwidth to the center
frequency remains constant [4]. Among the most simple but also effective
time-frequency wavelets is the Gabor based time-frequency expansion, where the
mother wavelet is a Gaussian function. The Gabor transform originally used rectangles
to designate each of the time-frequency elementary signals. Wavelet-based
time-frequency analysis belongs to the Weyl-Hiesenberg generalized class. The
introduction of chirplets for time-frequency analysis also belongs to the same class and
has been used to better describe the second- (i.e. Doppler acceleration) and
higher-order signal nonlinearity [5,14-15]. Another transform that is also considered as
a generalization of the Gabor transform is the s-transform [16-17]. All these transforms
do not introduce cross-term artifacts as those of the Cohen class time-frequency
analysis methods. However, they often result in inferior resolution when compared to
the Cohen class transforms.

Other techniques in time-frequency analysis include the Adaptive Joint Time-Frequency
(AJTF) transform [8-9,18-19]. It is based on the series analysis of a time-varying signal
into a high-order polynomial of time (i.e., Doppler, Doppler acceleration, etc.). The
estimation of parameters assumes the presence of very strong (i.e., high signal-to-noise
ratio) point scatterers. For example, for a second-order polynomial, at least two very
strong scatterers are required from the same moving target. These polynomial
parameters may be used for motion compensation as well as for target recognition.

In recent years the Fractional Fourier Transform (FRFT) has been introduced. The
FRFT is able to find linear changes in the frequency over time [8]. However, for
higher-order nonlinearity, extensions of this transform to time-frequency domain must
be incorporated [14].

Enhancements and filtering techniques on the results of the above mentioned
transforms have been proposed by many researchers. The most promising methods are
the Choi-Williams filters which are applied in the Wigner-Ville class of time-frequency
transforms and the reassignment methods, which are applied to any time-frequency
distribution [20-21].

In this report we present a new method for increasing the detectability of time-varying
signals, for high resolution improvements on the results and for reduction of the noise
and cross-term artifacts. This new concept of time-frequency analysis is based on TFD
algorithmic fusion. TFD algorithmic fusion is required to mathematically analyze the
TFD algorithms. This analysis may be performed a priori, or, by using self-adaptive
data analysis techniques on the results (e.g., by applying weighting techniques, where
the weights are found optimally from training data sets using least-squares techniques
or neural networks).
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2. Time-Frequency Analysis Algorithms

In this section we present a sample of algorithms used in our performance evaluation
and the development of an algorithmic fusion method to enhance the results. Detailed
description, properties and derivation of each transform can be found from the
references, particularly from [4-13].

2.1 Adaptive Energy Distribution (AED)

Adaptive Energy Distribution (AED) is a window-matched spectrogram, where the
window matching is performed with the use of generalized instantaneous parameters
(GIP’s). The GIP’s that are used for Gaussian window matching are the instantaneous
time variance (ITV), the instantaneous frequency variance (IFV), and the instantaneous
time-frequency (ITF) covariance [22]. These variance measures are calculated from
instantaneous moments and expressed in the following succinct forms, i.e.,

ITVzh(t, f) = − 1

8π2
<
"
∂2Sx(t, f)

∂f2
1

Sx(t, f)
−
µ
∂Sx(t, f)

∂f

1

Sx(t, f)

¶2#
(1)

IFVzh(t, f) = − 1

8π2
<
"
∂2Sx(t, f)

∂t2
1

Sx(t, f)
−
µ
∂Sx(t, f)

∂t

1

Sx(t, f)

¶2#
(2)

ITFzh(t, f) = − 1

8π2
<
"
∂2Sx(t, f)

∂f∂t

1

Sx(t, f)
− ∂Sx(t, f)

∂f

∂Sx(t, f)

∂t

µ
1

Sx(t, f)

¶2#
(3)

where Sx(t, f) specifies the spectrogram of the signal x(t) formed using the window
h(t). < indicates the real part of the expression and f = ω/(2π), where f is the
frequency and ω is the angular frequency. The subscript zh in equations (1)-(3) denotes
that the signal x(t) has been multiplied by the window h(t). The parameters for an
optimal window are found by matching the GIP ’s of the signal-window spectrogram
to those of the window-window spectrogram. The optimal window parameters are
updated iteratively until the desired level of matching is achieved. At the nth iteration
they are calculated with

αn+1(t, f) =
(8π)3 (ITFzhn(t, f))

2 IFVzhn(t, f)

(8π)2 (ITFzhn(t, f))
2 + 1

(4)

and

DRDC Ottawa TR 2003-187 3



βn+1(t, f) =
(8π)2 ITFzhn(t, f) IFVzhn(t, f)

(8π)2 (ITFzhn(t, f))
2 + 1

(5)

or if ITVzhn(t, f) > IFVzhn(t, f) then

αn+1(t, f) =
1

8π · ITVzhn(t, f)
(6)

and

βn+1(t, f) =
1

(8π)2 ITVzhn(t, f) ITFzhn(t, f)
(7)

where α and β are the parameters of the Gaussian window h(t) = exp−π(α−jβ)t2 .

2.2 Adaptive Gaussian Chirplet Decomposition (AGCD)

Adaptive joint time-frequency analysis is a good tool to analyze the time-varying
Doppler features of a target. The chirp function is one of the most fundamental
functions in nature. Many natural events, for example, signals in seismology and radar
systems, can be modelled as a superposition of short-lived chirp functions. Hence, the
chirp-based signal representation, such as the Gaussian chirplet decomposition, has
been an active research area in the field of signal processing [4,15]. The Gaussian
chirplet is defined as

hk(t) =
4

r
αk
π
exp

½
−αk
2
(t− tk)2 + j

µ
ωk +

βk
2
(t− tk)

¶
(t− tk)

¾
(8)

where αk > 0 and tk,ωk,βkεR. hk(t) has a very short and smooth envelope, i.e., a
Gaussian envelope. (tk,ωk) indicates the time and frequency center of the linear chirp
function. The variance αk controls the width of the chirp function. The parameter βk
determines the rate of change of frequency. It shows that not only can we adjust the
variance and time-frequency center, but also we can regulate the orientation of hk(t) in
the time-frequency domain by varying parameter βk. For the Gaussian chirplet
decomposition, the corresponding adaptive spectrogram is

AS(t,ω) = 2
X
k

|Bk|2 exp
·
−αk (t− tk)2 − 1

αk
(ω − ωk − βkt)

2

¸
(9)

which is non-negative. AGCD has an excellent resolution and has no cross-term
artifacts.
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2.3 Adaptive Gabor Expansion (AGE)

Adaptive Gabor Expansion (AGE) is similar to the adaptive Gaussian chirplet
decomposition [4,15]. The only difference is AGE uses a Gaussian function instead of a
Gaussian chirplet function, i.e.,

hk(t) =
4

r
αk
π
exp

n
−αk
2
(t− tk)2 + j ωk (t− tk)

o
tk,ωkεR,αkεR

+(10)

2.4 Linear Time-Frequency Transforms

All linear time-frequency transforms satisfy the superposition or linearity principle
which states that if x(t) is a linear combination of some signal components, then the
time-frequency transforms of x(t) have the same linear combination of the
time-frequency transforms of each of the signal components, i.e.,

x(t) = c1 x1(t) + c2 x2(t)→ Tx(t, f) = c1 Tx1(t, f) + c2 Tx2(t, f)(11)

Linearity is a desirable property in any application involving multi component signals.
One of the basic linear time-frequency transforms is the short-time Fourier transform
(STFT) [5-7,10]. The STFT is given as

STFTx(t,ω) =

Z
x(τ)w(τ − t) exp(−jωτ) dτ(12)

where w(t) is a rectangular window function, t is time and τ is running time. When a
Gaussian window is used, the result is the Gabor transform and is given as

GTFTx(t,ω) = x(τ)
1√
πσ

exp

½
−(τ − t)

2

2σ2

¾
exp(−jωτ) dτ(13)

where σ is the standard deviation. Other windowing functions that are used in this
report are [5-7]:

Triangular window : w(t) = 1− 2|t|
τ

for |t| ≤ τ

2
,(14)

Hanning window : w(t) =
1

2

µ
1 + cos

2πt

τ

¶
for |t| ≤ τ

2
,(15)
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Hamming window : w(t) = 0.54 + 0.46 cos
2πt

τ
for |t| ≤ τ

2
,(16)

Blackman window : w(t) = 0.42−0.5 cos 2πt
τ
+0.08 cos

2πt

τ
for |t| ≤ τ

2
.

(17)

Kaiser window : w(t) =
I0

h
γ
p
1− (2t/τ)2

i
I0(γ)

for |t| ≤ τ

2
,(18)

where I0 is the modified Bessel function of the first kind and of order zero, and γ is a
parameter. We also introduce and test an inverse relation window function. Its
amplitude response relatively has a narrow main-lobe and has almost no side-lobes.
The inverse window function is given as

Inverse window function : w(t) =

µ
1

t+ 1

¶p
for |t| ≤ τ

2
.(19)

where the exponential p is a positive integer.

2.5 Bilinear Time-Frequency Distributions

In contrast to the linear time-frequency transforms such as the short-time Fourier
transform, the Wigner-Ville distribution (WVD) is said to be bilinear. For a signal s(t),
its Wigner-Ville distribution is

Wx(t,ω) =

Z
x(t+

τ

2
)x∗(t− τ

2
) exp(−jωτ) dτ(20)

The Wigner-Ville distribution not only possesses many useful properties, but also has
better resolution than the STFT spectrogram. Although the Wigner-Ville distribution
has existed for a long time, its applications are very limited. One main deficiency of the
Wigner-Ville distribution is the so-called cross-term artifacts [5-7]. Suppose we express
a signal as the sum of two signal components,

x(t) = x1(t) + x2(t)(21)
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Substituting this into equation (20), we have

Wx(t,ω) =Wx1x1(t,ω) +Wx2x2(t,ω) +Wx1x2(t,ω) +Wx2x1(t,ω)(22)

where

Wx1x2(t,ω) =
1

2π

Z
x?1(t−

1

2
τ)x2(t+

1

2
τ) e−jωτ dτ(23)

This is called the cross Wigner-Ville distribution. In terms of the spectrum it is

Wx1x2(t,ω) =
1

2π

Z
x?1(ω +

1

2
θ)x2(ω − 1

2
θ) e−jtθ dθ(24)

The cross Wigner-Ville distribution is complex. However,Wx1x2 =W
?
x2x1 , and

therefore Wx1x2(t,ω) +Wx2x1(t,ω) is real. Hence

W (t,ω) =Wx1x1(t,ω) +Wx2x2(t,ω) + 2<{Wx1x2(t,ω)}(25)

We see that the Wigner-Ville distribution of the sum of the two signals is not the sum of
the Wigner-Ville distribution of each signal but has the additional term
2<{Wx1x2(t,ω)}. The term is often called the interference term or the cross-term and
it is often said to give rise to artifacts. Because the cross-term usually oscillates and its
magnitude is twice as large as that of the auto-terms, it often obscures the useful
time-dependent spectrum patterns.

The inverse Fourier transform of the Wigner-Ville distribution is called the ambiguity
function (AF). The Fourier transform maps the Wigner-Ville distribution auto-terms to
a region centered on the region of the AF plane, whereas it maps the oscillatory
Wigner-Ville distribution cross-terms away from the origin [5-7,23-24].

The fact that the auto- and cross-terms are spatially separated in the AF domain means
that if we apply a filter function to the AF, we can suppress some of the cross-terms.
This filtering operation defines a new time-frequency distribution

TFD = Fourier transform{AF ·Kernel}(26)

with properties different from the Wigner-Ville distribution. The filter function is called
the ‘kernel’ of the TFD. Since there are many possible 2-dimensional kernel functions,
there exist many different TFDs for the same signal. The class of all TFDs obtained in
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this fashion is called Cohen’s class. A more detailed description of the ambiguity
function and Cohen’s class are given [5-7,23-24].

Cohen’s general class of bilinear TFDs is defined as

C(t,ω) =
1

2π

Z Z
AF (θ, τ)Φ(θ, τ) exp[j(θt− ωτ)] dθ dτ(27)

where Φ(θ, τ) is a kernel function and AF (θ, τ) is the ambiguity function of the signal
defined by

AF (θ, τ) =

Z
x(t+

τ

2
)x∗(t− τ

2
) exp(−jθτ) dt(28)

where θ represents the frequency-offset and τ represents the time-offset. Cross-terms in
the WVD can be effectively filtered in the ambiguity domain by designing kernels that
filter the signal part of the ambiguity function. The kernel functions that are used in this
report are [5-7]:

Born-Jordan:

Φ(θ, τ) = 2
sin(θτ/2)

θτ
(29)

Choi-Williams:

Φ(θ, τ) = exp

·
−(θτ)

2

σ2

¸
(30)

Butterworth:

Φ(θ, τ) =

"
1 +

µ
τ

τ0

¶2M µ
θ

θ0

¶2N#−1
(31)

Generalized exponential:

Φ(θ, τ) = exp

"
−
µ
τ

τ0

¶2M µ
θ

θ0

¶2N#−1
(32)

Cone-shaped,
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Φ(θ, τ) = 2 exp(−ατ2)sin(θτ/2)
θ

(33)

Tilted Gaussian:

Φ(θ, τ) = exp

(
−π
"µ

τ

τ0

¶2
+

µ
θ

θ0

¶2
+ 2r

µ
τθ

τ0θ0

¶#)
(34)

Tilted Butterworth

Φ(θ, τ) =

"
1 +

µ
τ

τ0

¶2
+

µ
θ

θ0

¶2
+ 2r

µ
τθ

τ0θ0

¶#−1
(35)

where τ0 and θ0 are two scaling parameters and r is the rotation parameter. The
kernel’s contours are un-tilted when r = 0 and tilted ellipses when r 6= 0 in the AF
plane. A tilted parallel strip is also possible by setting r ± 1.

2.6 Adaptive Optimal-Kernel (AOK)

Since real signals have different shapes in the ambiguity domain, no single kernel can
give adequate performance for a large class of signals. Hence, there has been increasing
interest in signal-dependent or adaptive TFDs, in which the kernel function varies with
the signal. Adaptation of the kernel over time is beneficial because it permits the kernel
to match the local signal characteristics [25].

The signal-dependent TFR is based on kernels with Gaussian radial cross-sections

Φ(θ, τ) = exp

µ
−θ

2 + τ2

2σ2(ψ)

¶
(36)

The function σ(ψ) controls the spread of the Gaussian function at radial angle ψ.
Clearly if σ is smooth, then Φ is smooth. The angle ψ is measured between the radial
line through the point (θ, τ) and the θ-axis

ψ = arctan
τ

θ
(37)

It is natural to express radially Gaussian kernels in polar coordinates; using
r =

p
θ2 + τ2 as the radius variable,
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Φ(r,ψ) = exp

µ
− r2

2σ2(ψ)

¶
.(38)

A better TFD results when the kernel is well matched to the components of a given
signal. The radially Gaussian kernel is adapted to a particular signal by solving the
following optimization problem:

max
Φ

Z 2π

0

Z ∞

0

|AF (r,ψ)Φ(r,ψ)|2 r dr dψ(39)

Subject to

Φ(r,ψ) = exp

µ
− r2

2σ2(ψ)

¶
,

Z 2π

0

σ2(ψ) d(ψ) ≤ α, α ≥ 0(40)

Here, AF (r,ψ) is the AF of the signal in polar coordinates. The problem requires the
area of the kernel to be constant with the projection of the kernel on the ambiguity
function of the signal to be maximal. Since this optimization problem takes a long time
to solve, a simplified adaptive kernel is implemented. The simplified adaptive kernel is
just proportional to the sum of the ambiguity function in each radial direction, i.e.,

σ(ψ) = c

Z ∞

0

|AF (r,ψ)|2 dr, c ≥ 0(41)

The parameter c is similar to α in equation (40) and determines the extent of the kernel
in a radial direction. This way the kernel lets through most of the signal’s auto-terms
but not the cross-terms and calculates the optimization problem more quickly. An
adaptive kernel, which is radially inverse, has been also proposed for the TFD, i.e.,

Φ(r,ψ) =

"
1 +

µ
r

σ(ψ)

¶2#−1
(42)

An adaptive kernel, which is radially constant, is also proposed for the TFD and is
given as

Φ(r,ψ) =

 1 if exp
³
− r2

2σ2(ψ)

´
≥ k

0 if exp
³
− r2

2σ2(ψ)

´
< k

(43)

where k is a constant
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3. Fusion of algorithms - A new approach

Fusion of TFD algorithms requires mathematical analysis of the performance of each
algorithm under a wide range of single or multiple signals of interest at all
signal-to-noise ratios and with noise models that are representative to the operating
environment of applicability. The objective of fusing TFD algorithms is to develop a
system that has better performance than any subset of algorithms or their combinations.

It is extremely difficult to develop a single TFD algorithm that produces satisfactory
resolution and low noise levels with no cross-term artifacts for all signals and
signal-to-noise ratios. However, different TFD may filter various components of signals
with different degree of success, based on the quality and number of signals and their
signal-to-noise ratios. With many TFD algorithms available a combination of them may
result in both high resolution and low levels of noise and cross-term artifacts. TFD
algorithmic fusion is designed to amplify results from algorithms that produce good
TFDs and to suppress algorithms that do not work well for a particular environment.

Mathematical analysis of the TFD algorithms, for all kinds of environments, is not an
easy task. In this section we present a methodology that weights the outputs of selected
TFDs and their first-order multiplication (i.e. first- and second-order terms of a Volterra
series expansion) to result in an enhanced TFD. The enhanced TFD produces high
resolution, low cross-term artifacts and low noise. Herein, the presented fusion process
produces a new TFD, which is a linear combination of the TFDs from available
algorithms and their products.

The fusion process finds the coefficients ρl for each of the TFDs Al = {aij}l of the
available algorithms such that the linear combination is a close as possible to the ideal,
noise free, TFD:

ρ1A1 + ρ2A2 + ...+ ρnAn = D(44)

Equivalently equation (44) can be written as

X
l=1...n

ρl(aij)l = dij(45)

where D = {dij} is the ideal distribution. In this description, n refers to the number of
available time-frequency algorithms and their TFDs, and N is the length of a signal. To
solve for ρ each Al matrix is written as a column and the equation becomes
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(a11)1 (a11)2 ... (a11)n
(a12)1 (a12)2 ... (a12)n

...
... . . . ...

(aNN)1 (aNN)2 ... (aNN )n




ρ1
ρ1
...
ρ1

 =

d11
d12

...
dNN

(46)

which has the least-square solution

ρ = [BtB]−1Btc(47)

where B is the matrix that contains the TFDs of each algorithm as columns and c is the
column vector that contains all the dij . Once all the coefficients ρl are known, a fused
TFD F can be constructed according to

ρ1A1 + ρ2A2 + ...+ ρnAn = F(48)

To include multiplications between the TFDs of different algorithms, equation (45) can
be changed to

X
l=1...n

ρlAl +
X

i=1...n;j=i+1...n

µijAiAj = D(49)

where AiAj = Ã are element by element products between each pair of TFDs and µk
are their coefficients in the fused TFD. With this modification, the matrix B will
include the columns of Al as well as Ãk and ρ will be a column vector with both ρl and
µk in it. Solution of equation (47) will give the coefficients that are required to make
the fused TFD. When multiplicative factors are included in the fusion process, the
signal parts are amplified, and at the same time, blurring and artifacts are suppressed.

In order to make the fusion process to suppress noise (in addition to artifacts) in the
TFDs of the given algorithms, the coefficients ρ have to include the noise information.
When TFDs with different noise levels (SNR) are present, then a separate matrix
BSNRm is formed for each SNR, i.e.,

BSNRm =



(a11)
SNRm
1 (a11)

SNRm
2 .. (a11)

SNRm
n (ã11)

SNRm
1 (ã11)

SNRm
2 .. (ã11)

SNRm
n2−n
2

(a12)
SNRm
1 (a12)

SNRm
2 .. (a12)

SNRm
n (ã12)

SNRm
1 (ã12)

SNRm
2 .. (ã12)

SNRm
n2−n
2...

... . . . ...
...

... . . . ...
(aNN)

SNRm
1 (aNN)

SNRm
2 .. (aNN)

SNRm
n (ãNN )

SNRm
1 (ãNN )

SNRm
2 .. (ãNN )

SNRm
n2−n
2


(50)
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Then equation (46) becomes


BSNR1

BSNR2

...
BSNRM

 ρ =


c
c
...
c

(51)

Solution of equation (51) can then be used to make a TFD in which noise and artifacts
are suppressed. Equation (51) may be extended to include multiple signals and
furthermore make the proposed approach applicable to a wider set of signals. It should
be pointed out that equation (51) is used for the training process, where only the vector
ρ is unknown. The left part of the equation (51) is used for the fusion process, when the
signal is unknown.

Although the fusion process requires an ideal TFD in order to find the coefficients of
each available distribution, it is required only once. After the coefficients are estimated,
they are used to construct fused TFDs of signals from the same source, but with
different levels of noise (variable signal-to-noise ratios) and a set of representative
noise models and signals.
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Figure 1: (a) Time history of bat echolocation signal. (b) Fourier spectrum of bat echolocation signal.

4. Results and discussion
4.1 Performance evaluation on time-frequency algorithms

In this section we evaluate and compare the qualitative and quantitative performances
of different TFDs with an ideal distribution. A TFD maps a one-dimensional signal to a
two-dimensional time-frequency image that displays how the frequency content of the
signal changes over time. Experimental bat echolocation signals provide an excellent
motivation for time-frequency based signal processing. The bats use echolocation
signals for navigation and hunting in a dark environment. Bat echolocation signals are
high frequency and short duration signals. These signals are made up of chirps having
hyperbolic-like instantaneous frequency. For this signal, the frequencies tend to
increase with increasing time. The experimental echolocation signal data was taken
from [26] and is used for the comparison and evaluation of different TFDs. There are
400 data samples with sampling period of 7 µs. Therefore the data length is 2.8 ms. In
this section we evaluate the ability of each TFD to detect the hyperbolic nature of the
chirp with minimum artifacts.

Figure 1 shows that neither the time signal nor its Fourier spectrum reveal the true
structure of the signal. In contrast, a time-frequency image of the signal clearly exposes
its non-stationary character. While each signal has a unique Fourier spectrum, a
time-frequency analysis of that signal is not unique. In other words, many different
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Figure 2: An ideal time-frequency distribution. The horizontal axis is time and the vertical axis is frequency.

TFDs can describe the same data. Since for any given signal some TFDs are ‘better
than others’, TFD design has become an important research area.

An ideal distribution or the theoretical instantaneous frequency, i.e., noise-free
Wigner-Ville distribution, of a bat echolocation signal is manually plotted in Figure 2 as
a reference for comparison. The qualitative performance of different TFDs was
examined based on the amount of cross-term artifacts, noise levels and time-frequency
resolution (Figures 3-6). The time-frequency resolution of different TFDs was visually
compared to the ideal time-frequency distribution. Although we studied and compared
all the TFDs described in section 2, we only show certain TFDs in Figures 3-6.
However, the quantitative performances of all the TFDs are tabulated in Tables 1-2. The
quantitative performance of each TFD was studied using the mean-squared error
estimation. The mean-squared error was estimated between TFD produced by each
algorithm and an ideal distribution.

Figure 3 shows the adaptive energy distribution and adaptive spectrograms computed
by Gabor expansion and Gaussian chirplet decomposition of a bat signal. In this
example the time-frequency resolution of the adaptive Gaussian chirplet spectrogram is
obviously superior to other two schemes. The adaptive Gaussian chirplet spectrogram
not only shows excellent time-frequency resolution, but also does not suffer from
cross-term artifacts. Compared with the adaptive energy distribution, the performance
of the adaptive Gabor expansion based spectrogram is rather poor. In this case, adaptive
Gabor expansion based spectrogram does not offer good time-frequency resolution due
to the limitation of the number of degrees of freedom used in the elementary functions.
Compared with the adaptive Gabor transform, the adaptive chirplet matches the bat
sound much better in terms of fewer terms required. In this case, the adaptive Gabor
transform needs 10 times more terms than that needed by its adaptive Gaussian chirplet
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Figure 3: Time-frequency distribution of (a) AED, (b) AGCD and (c) AGE. The horizontal axis is time and the vertical
axis is frequency.

counterpart. This is because the Gaussian chirplet fits the bat sound better than it does
the regular Gaussian function. The regular Gaussian function is a special case of the
Gaussian chirplet. The adaptive Gaussian chirplet decomposition algorithm is an
excellent candidate for signals that are composed of chirps and chirplets, but for signals
that have frequency modulation, the adaptive Gaussian chirplet decomposition is not
the desired algorithm since it tries to approximate the signal by chirplets (line segments
in the TF plane, see Figure 3b).

Figure 4 shows the linear time-frequency transforms with different windows. In this
case short-time Fourier transform is used with various window functions. The window
functions used in this figure are Gaussian, Hanning and Kaiser. Unlike the adaptive
Gaussian chirplet decomposition, these transforms represent all the information
contained in the signal. These linear time-frequency transforms often work well, but the
performance always depends on the choice of the window used in the representation. In
general, the appropriate window depends on the data and can differ for different
components in the same signal. Furthermore, selection of the appropriate window
requires some knowledge of the signal components of interest. In many applications,
such information is not available, and it is desirable to avoid presupposing the form of
the data. This is one of the main drawbacks of linear time-frequency transforms.

Figure 5 shows the bilinear TFDs with different kernels. The kernel functions used in
this figure are Choi-Williams, tilted Butterworth and tilted Gaussian. These bilinear
TFDs generally show better time-frequency resolution than the linear transforms. But
these bilinear distributions require longer computational time and have larger amounts
of cross-term artifacts. Since real signals have different ambiguity functions, no single
kernel can perfectly filter the cross-term artifacts. When a low-pass kernel is employed,
there is a trade-off between cross-term suppression and auto-term concentration.
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Figure 4: Linear time-frequency distributions with different windows: (a) Gaussian, (b) Hanning and (c) Kaiser. The
horizontal axis is time and the vertical axis is frequency.

a b c 
 
 

Figure 5: Bilinear time-frequency distributions with different kernels: (a) Choi-Williams, (b) tilted butterworth and (c)
tilted Gaussian. The horizontal axis is time and the vertical axis is frequency.

DRDC Ottawa TR 2003-187 17



a b c 

 

Figure 6: Bilinear time-frequency distributions with adaptive kernels: (a) radially constant, (b) radially Gaussian and
(c) radially inverse. The horizontal axis is time and the vertical axis is frequency.

Generally, as the pass-band region of the kernel reduces, the amount of cross-term
artifacts suppression increases, but at the expense of auto-term concentration.
Adjustable kernels such as tilted Gaussian and tilted Butterworth can be manually fitted
to a signal for better results. However, for some signals, the selection of manual
parameters to produce good results is very difficult. Figure 5 shows that the tilted
Gaussian kernel function produces the best results in terms of low cross-term artifacts
and relatively higher time-frequency resolution than Figures 3-4.

In order to compare the performance of the signal-dependent TFD with the fixed-kernel
bilinear TFDs shown in Figure 5, the adaptive optimal kernel TFDs are shown in Figure
6. The kernel functions used in this figure are radially constant, radially Gaussian and
radially inverse. Unlike the kernels used in bilinear TFD that emphasize preserving the
properties of the Wigner-ville distribution over matching the shape of auto-terms, the
signal-dependent kernels aim to optimally pass the auto-terms while suppressing
cross-term artifacts. Since a fixed-kernel acts on the ambiguity domain as a filter, it is
limited in its ability to perform this function. Figure 6 shows a very good performance
for representing a bat sound signal using a signal-dependent kernel. Radially constant
(rectangular) and radially inverse kernels have almost as good resolution and as a
consequence they produce some ripples or artifacts in the distribution. The radially
Gaussian kernel is a good trade-off between the two because it has almost the same
resolution and much less artifacts. These results clearly show that the adaptive optimal
kernel TFD performs much better than the fixed-kernel methods shown in Figure 5.

The mean-squared error is used as quantitative performance evaluation criterion. Tables
1-2 summarizes the mean-squared errors between the TFDs produced by the
algorithms, described in section 2, and an ideal distribution (noise free Wigner-Ville
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distribution). As expected, the performance of the adaptive Gaussian chirplet
decomposition spectrogram is better than the adaptive Gaussian expansion spectrogram
and adaptive energy distribution. Among linear TFDs, most of the window functions
such as Hanning, Hamming, Kaiser and Triangular produce similar performance.
Generally the bilinear TFDs show better performance than the linear transforms. The
tables show that the tilted Gaussian, the Butterworth and the generalized exponential
kernel functions produce the good results for bilinear TFDs. Overall, the table clearly
shows that the adaptive kernel approach, especially the radially adaptive Gaussian
kernel, produces the best results. These results agree with our qualitative assessments
(Figures 3-6).
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Name of Algorithm Additional Parameters MSE

AED One iteration 5.4339617e-003
AGCD 2.2599995e-003
AGE 1.2392711e-002

Linear TFDs: (windows length 75)

Rectangular window 2.8201142e-002
Triangular window 2.3723928e-002
Gaussian window 2.8667000e-002
Inverse window (14) p = 0.1 3.0140008e-002
Inverse window p = 0.5 3.7577926e-002
Hanning window 2.4042926e-002
Hamming window 2.4074127e-002
Kaiser window γ = π 2.3485069e-002
Kaiser window γ = 2π 2.4590848e-002
Blackman window 2.6584902e-002

Bilinear TFDs:

Rectangular (constant) kernel 5.3253611e-003
Born-Jordan kernel 7.6448613e-003
Choi-Williams kernel σ = 3 6.1759351e-003
Choi-Williams kernel σ = 10 4.4467070e-003
Butterworth kernel M = 2, N = 2, τ0θ0 = 30 3.4777470e-003
Gaussian kernel σ = 100 3.5908155e-003
Gaussian kernel σ = 200 6.2000926e-003
Generalized exponential distribution M = 10, N = 1, τ0θ0 = 30 2.1118777e-003
Generalized exponential distribution M = 5, N = 2, τ0θ0 = 50 1.6623236e-003
Cone-shaped kernel α = 0.001 6.8324434e-003
Cone-shaped kernel α = 0.0001 6.7897483e-003
Tilted Gaussian distribution τ0 = 0.1, θ0 = 0.2, r = 0.5 1.9228440e-003
Tilted Gaussian distribution τ0 = 0.2, θ0 = 0.1, r = 0.5 8.1887901e-003
Tilted Butterworth distribution τ0 = 0.05, θ0 = 0.1, r = 0.5 1.1315364e-003
Tilted Butterworth distribution τ0 = 0.1, θ0 = 0.2, r = 0.5 8.8955521e-004

Table 1: Quantitative performance evaluation of TFDs
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Name of Algorithm Additional Parameters MSE

Adaptive kernel: radially constant σ(ψ) = 100 1.0445602e-003
Adaptive kernel: radially constant σ(ψ) = 200 6.9237386e-004
Adaptive kernel: radially Gaussian σ(ψ) = 100 8.8654181e-004
Adaptive kernel: radially Gaussian σ(ψ) = 200 6.2966003e-004
Adaptive kernel: radially inverse σ(ψ) = 100 1.9123454e-003
Adaptive kernel: radially inverse σ(ψ) = 200 1.0593200e-003

Table 2: Quantitative performance evaluation of TFDs
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Figure 7: A schematic of the experiment set-up for studying an oscillating scatterer. The third scatterer from the top
is attached to a mechanical sine-drive. The other three scatterers are stationary to provide reference in the HRR
profiles.

4.2 Fusion approach

We demonstrate the performance of our new algorithm using the experimental high
range resolution radar data. An experiment was set up to compare the new TFD
approach with other available TFDs. High range resolution profiles were collected
using a stepped frequency wave-form (SFWF) radar mode at X-band between 8.9 to 9.3
GHz., i.e., a synthetic bandwidth of 400 MHz; the frequency step size was 1 MHz. The
experimental set up is shown schematically in Figure 7, which shows the three
stationary corner reflectors and an oscillating corner reflector. The test target was made
up of four corner reflectors, three of which are stationary to provide a geometric
reference and a contrast to the distorting shape of the oscillating reflector in the HRR
profiles.

Figure 8 shows the standard HRR image of the complex target. The HRR profile of an
oscillating scatterer is clearly apparent in the figure. When the oscillating scatterer is
stationary, a sharp peak is observed in the HRR profile as expected. This is shown as
the top profile in Figure 8. However, when the scatterer is in motion, the spread in the
spectrum tells us very little about the scatterer’s bahaviour, as shown as the bottom
profile in Figure 8.

TFDs immediately provide more information. Figure 9 shows the time-frequency
signature of the radar signal returned from the four scatterers, where the oscillating
curve can be observed very well. Figure 9 shows the results of nine TFDs. TFDs used
in this figure are Wigner-Ville distribution, Born-Jordan distribution, Choi-Williams
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Figure 8: HRR profiles of four-scatterer target. Top profile: all four scatterers stationary; bottom profile: three
stationary scatterers and one oscillating scatterer.

distribution, bilinear TFD with Butterworth kernel, bilinear TFD with 2-dimensional
Gaussian kernel, generalized exponential distribution, cone-shaped distribution, tilted
Gaussian distribution and tilted Butterworth distribution. These nine TFDs are used for
the algorithmic fusion method described in Section 4. Figure 10 shows the resulting
TFD obtained by using the algorithmic fusion method. An ideal distribution, i.e.,
noise-free Wigner-Ville distribution, is manually plotted in Figure 11 as a reference for
comparison. As expected, Figure 10 shows considerable improvement over other TFDs
presented in Figure 9. We can see that Figure 10 achieves the same sharpness as the
reference image. These results demonstrate that the new algorithmic fusion method
performed well in achieving improved resolution, highly concentrated and readable
representation, without the auto-term distortion and cross-term artifacts that are
apparent in all the representations of Figure 9.
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Figure 9: Results of nine TFDs: (a) Wigner-Ville distribution, (b) Born-Jordan distribution, (c) Choi-Williams
distribution, (d) bilinear TFD with Butterworth kernel, (e) bilinear TFD with 2-dimensional Gaussian kernel, (f)
generalized exponential distribution, (g) cone-shaped distribution, tilted Gaussian distribution and (h) tilted
Butterworth distribution. The horizontal axis is time and the vertical axis is frequency.
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Figure 10: TFD obtained from the algorithmic fusion method. The horizontal axis is time and the vertical axis is
frequency.

Figure 11: An ideal time-frequency distribution. The horizontal axis is time and the vertical axis is frequency.
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5. Conclusion

This report evaluates and compares the qualitative and quantitative performances of
different time-frequency distributions (TFDs) developed for the past ten years and
proposes a new approach in time-frequency analysis applied to synthetic aperture radar
imaging and target feature analysis.

Among linear TFDs, most of the window functions such as Hanning, Hamming, Kaiser
and Triangular produce similar performance. Generally the bilinear TFDs show better
performance than the linear transforms. The tilted Gaussian, the Butterworth and the
generalized exponential kernel functions produce good results for bilinear TFDs. The
performance of the adaptive Gaussian chirplet decomposition spectrogram is better
than the adaptive Gaussian expansion spectrogram and adaptive energy distribution.
Overall, the study clearly shows that the adaptive kernel approach, especially the
radially adaptive Gaussian kernel, produces the best results from all tested methods
when the mean-squared error is used as the performance evaluation criterion. These
results agree with our qualitative assessments. A short review of different
time-frequency approaches is also provided.

A new TFD algorithmic fusion method is presented and evaluated on the experimental
high range resolution radar data and simulated data. It is shown that the TFD
algorithmic fusion method provides an effective method of achieving improved
resolution, highly concentrated and readable representation without the auto-term
distortion and cross-term artifacts. This method is suitable for HRR and ISAR data
where multiple scatterers are present, and noise along with artifact reduction are
essential for target identification applications. Analysis of the time-varying Doppler
signature in the joint time-frequency domain can provide useful information for target
detection, classification and recognition. We anticipate that this new approach will find
a wide range of uses and will emerge as a powerful tool for time-varying spectral
analysis.

Our study shows how the TFD algorithmic fusion method provides useful data
visualization of non-stationary signals in the time-frequency plane. For useful
application of this method, however, the derivation of measures, statistics, or
parameters from the time-frequency plane, are required for further analysis and
processing; for example, automated target detection and classification. This is the
essential step to enable TFD algorithmic fusion method to be employed for processing
tasks other than data display. One of the advantages of the TFD algorithmic fusion
approach is that the noise tends to spread out its energy over the entire time-frequency
domain, while target signals often concentrate their energy on regions with limited time
intervals and frequency bands. Thus, signals embedded in noise are much easier to
recognize in the joint time-frequency domain. Hence, with constant false-alarm rate
(CFAR) detection, signals can be detected and reconstructed by using only the detected
time-frequency coefficients. Therefore, the target signal buried in noise can be detected
and its parameters can be measured. By applying time-varying frequency filtering, the
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signal-to-noise ratio (SNR) can also be enhanced and the resulting statistics would
outperform the conventional measure. We intend to investigate these scenarios in the
future study.

Another significant advantage of the TFD algorithmic fusion method, as we have
already seen, is that it allows us to determine whether, or not, a signal is
multicomponent or not and its ability to decompose the signal in the time-frequency
plane. That is, the time-frequency analysis enables us to classify signals with a
considerably greater reflection of the physical situation than can be achieved by the
Fourier spectrum alone. Based on this time-frequency localization, one may wish to
select “desired” signal components and remove unwanted contributions, by applying an
appropriate mask function. Time-varying filtering and signal synthesis have been
applied to many signal processing areas and we intend to investigate these approaches
in our future study.

This work is especially relevant to the HRR/ISAR imaging capability of the
surveillance radar systems on-board of the CF C-140 Aurora patrol aircraft and the US
Navy’s P3 Orion surveillance aircraft. Moreover, target recognition based on radar
imagery will play an active role in future CF initiatives on ISR (Intelligence,
Surveillance and Reconnaissance) for land, air and maritime applications.
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